OLED, or Organic Light Emitting Diodes, are an offshoot of existing conventional LED technology.OLED modules are semiconducting light sources that function through electroluminescence—that is, they produce photons (aka light) by plopping electrons into little electron holes within the device's emissive layer. Basically, electricity goes in and light comes out thanks to a semiconductuctive material, rather than a white-hot metal filament like an old-school lightbulb.
The technology of 240x128 lcd module, first successfully implemented in 1987 by Kodak researchers Ching W. Tang and Steven Van Slyke, takes this same idea as LED, but flattens it. Rather than an array of individual LED bulbs, OLED uses a series of thin, light emitting films. This allows the OLED array to produce brighter light while using less energy than existing LCD/LED technologies. And since these light-emitting films are composed of hydrocarbon chains, rather than semiconductors laden with heavy metals like gallium arsenide phosphide, they get that "O" for "organic" in their name.
An OLED panel is typically composed of four primary layers: The substrate, which acts as the structural framework; the anode, which draws electrons; the cathode, which provides electrons; and the organic layer between. That organic layer is further divided into a conducting layer—which provides the "electron holes" that the electrons flowing through layer can snap into, shedding energy in the process—and an emissive layer where the light is actually produced. And if you want to start messing with producing actual color, it's just a matter of adding red-, green-, and blue-tinted plastic layers to the substrate.
The technology of 240x128 lcd module, first successfully implemented in 1987 by Kodak researchers Ching W. Tang and Steven Van Slyke, takes this same idea as LED, but flattens it. Rather than an array of individual LED bulbs, OLED uses a series of thin, light emitting films. This allows the OLED array to produce brighter light while using less energy than existing LCD/LED technologies. And since these light-emitting films are composed of hydrocarbon chains, rather than semiconductors laden with heavy metals like gallium arsenide phosphide, they get that "O" for "organic" in their name.
An OLED panel is typically composed of four primary layers: The substrate, which acts as the structural framework; the anode, which draws electrons; the cathode, which provides electrons; and the organic layer between. That organic layer is further divided into a conducting layer—which provides the "electron holes" that the electrons flowing through layer can snap into, shedding energy in the process—and an emissive layer where the light is actually produced. And if you want to start messing with producing actual color, it's just a matter of adding red-, green-, and blue-tinted plastic layers to the substrate.
没有评论:
发表评论